Parallel
Programming
Lec 7

Books

Numerical Analysis and Scientific Computing

Parallel Algorithms

Henri Casanova, Arnaud legrand, and Yues Robert
co CRC Press
a cmarman a math sook

Undergradiate lopics in Computer Scieane

Paman Trobec - Bošjan Sinmik Patricio Bulic • Borut Robič

Introduction to Parallel Computing

From Algorithms to Programming on State-of-the-Art Platforms
vilics

Wiley Series on Parallel and Distributed Computing . Albert Zomayo. Series Editor

ALGORITHMS AND PARALLEL COMPUTING

PowerPoint

http://www.bu.edu.eg/staff/ahmedaboalatah14-courses/14779

Matrix-Matrix Multiplication

Problem Statement

Problem Statement

The result of multiplying the matrix A of order $m \times r$ by matrix B of order $r \times n$, is the matrix C of order $m \times n$
$C=A \times B$, is such that each of its elements is denoted $i j$ with $0 \leq i<m$ and $0 \leq j<n$, and is calculated follows

$$
c_{i j}=\sum_{k=0}^{r-1} a_{i k} \times b_{k j}
$$

Multiplying a square matrix by a square matrix (Sequential algorithm)

Input: Matrix A[n][n]
Matrix $B[n][n]$
Output: Matrix C[n][n]

$$
\begin{aligned}
& \text { for }(i=0 ; i<n ; i++) \\
& \qquad \begin{array}{l}
\text { for }(j=0 ; j<n ; j++) \\
\quad C[i][j]=0 ; \\
\quad \operatorname{for}(k=0 ; k<n ; k++) \\
\quad C[i][j]+=A[i][k] * B[k][j] ;
\end{array}
\end{aligned}
$$

Multiplying a square matrix by a square matrix (Sequential algorithm)

The number of operation required to multiply $A \times B$ is:

$$
n \times n \times n
$$

$T_{s}(n)=O\left(n^{3}\right)$

Parallel Methods
 for Matrix-Matrix
 Multiplication

Data Distribution

| \bullet |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| \bullet |
| \bullet |
| $\bullet \bullet$ | \bullet |
| \bullet |
| $\bullet \bullet$ | \bullet |
| \bullet |
| \bullet |

$$
\begin{array}{|ll|ll|ll|ll|}
\hline \bullet & \bullet \\
\bullet & \bullet \\
\bullet & \bullet \\
\bullet & \bullet \\
\bullet & \bullet \\
\bullet & \bullet \\
\bullet & \bullet \\
\bullet & \bullet \\
\hline
\end{array}
$$

| \bullet |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| \bullet |
| \bullet |
| $\bullet \bullet$ | \bullet |
| \bullet |
| \bullet |
| \bullet |
| \bullet |

Matrix-Matrix Multiplication in Case of 1-Dim

Matrix-Matrix Multiplication in 1-Dim

Matrix-Matrix Multiplication in 1-Dim

The $C_{n \times n}$ matrix is partitioned among n processors, with each processor computes row of the matrix.

thread1 ->	A11	A12	A13	A14
thread2 ->	A21	A22	A23	A24
thread3 ->	A31	A32	A33	A34
thread4 ->	A41	A42	A43	A44

B11	B12	B13	B14
B21	B22	B23	B24
B31	B32	B33	B34
B41	B42	B43	B44

Matrix-Matrix Multiplication in 1-Dim Parallel Algorithm

Input:	Matrix $A[n][n]$
	Matrix $B[n][n]$
Output:	Matrix $C[n][n]$

for ($\mathrm{i}=0 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++$) do in parallel for ($\mathrm{j}=0 ; \mathrm{j}<\mathrm{n} ; \mathrm{j}++$)

$$
\begin{aligned}
& C[i][j]=0 ; \\
& \text { for }(k=0 ; k<n ; k++) \\
& \quad C[i][j]+=A[i][k] * B[k][j] ;
\end{aligned}
$$

Matrix-Matrix Multiplication in 1-Dim Parallel Algorithm

$$
\begin{aligned}
& T_{p}(n)=O\left(n^{2}\right) \\
& S_{p}(n)=\frac{n^{3}}{n^{2}}=n ; S_{p}(n)=O(n) \\
& C_{p}(n)=O\left(n^{3}\right) \\
& E_{p}(n)=\frac{n^{3}}{n * n^{2}}=1
\end{aligned}
$$

Matrix-Matrix Multiplication in Case of 2-Dim

Matrix-Matrix Multiplication in 2-Dim

c
C
P_{5}
P_{1}
---:
P_{4}
P_{7}
P_{12}
P_{13}

Matrix-Matrix Multiplication in 2-Dim

The $C_{n \times n}$ matrix is partitioned among n^{2} processors, with each processor computes one element of the matrix.

Matrix-Matrix Multiplication in 2-Dim Parallel Algorithm

Input:	Matrix $A[n][n]$
	Matrix $B[n][n]$
Output:	Matrix $C[n][n]$

for ($\mathrm{i}=0 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++$) do in parallel for ($\mathrm{j}=0 ; \mathrm{j}<\mathrm{n} ; \mathrm{j}++$) do in parallel

$$
\begin{aligned}
& C[i][j]=0 ; \\
& \text { for }(k=0 ; k<n ; k++) \\
& \quad C[i][j]+=A[i][k] * B[k][j] ;
\end{aligned}
$$

Matrix-Matrix Multiplication in 2-Dim Parallel Algorithm

$$
\begin{aligned}
& T_{p}(n)=O(n) \\
& S_{p}(n)=\frac{n^{3}}{n}=n^{2} ; S_{p}(n)=O\left(n^{2}\right) \\
& C_{p}(n)=O\left(n^{3}\right) \\
& E_{p}(n)=\frac{n^{3}}{n^{2} * n}=1
\end{aligned}
$$

Matrix-Matrix Multiplication in Case of 3-Dim

Matrix-Matrix Multiplication: DNS Algorithm

Matrix-Matrix Multiplication: DNS Algorithm

Using fewer than n^{3} processors.

Each processor computes a single add-multiply.

This is followed by an accumulation along the C dimension.

Since each add-multiply takes constant time and accumulation and broadcast takes $\log n$ time, the total runtime is $\log n$.

Matrix-Matrix Multiplication: DNS Algorithm

$T_{p}(n)=O(\log n)$
$S_{p}(n)=\frac{n^{3}}{\log n}$
$C_{p}(n)=O\left(n^{3} * \log n\right)$
$E_{p}(n)=\frac{n^{3}}{n^{3} * \log n}=1 / \log n$

