
Parallel
Programming
Lec 7

1

Books

2

PowerPoint
http://www.bu.edu.eg/staff/ahmedaboalatah14-courses/14779

3

Matrix-Matrix
Multiplication

4

Problem Statement

5

Problem Statement
The result of multiplying the matrix A of order m × r by
matrix B of order r × n, is the matrix C of order m × n

C = A × B, is such that each of its elements is denoted ij
with 0 ≤ i < m and 0 ≤ j < n, and is calculated follows

𝑐𝑖𝑗 = 𝑘=0
𝑟−1 𝑎𝑖𝑘 × 𝑏𝑘𝑗

6

Multiplying a square matrix by a square
matrix (Sequential algorithm)

Input: Matrix A[n][n]

Matrix B[n][n]

Output: Matrix C[n][n]

for (i = 0; i < n; i++)
for (j = 0; j < n; j++)

C[i][j] = 0;

for(k = 0; k < n; k++)

C[i][j] += A[i][k] * B[k][j];

7

Multiplying a square matrix by a
square matrix (Sequential algorithm)

The number of operation required to multiply A x B is:

n × n × n

Ts(n) = O(n3)

8

Parallel Methods
for Matrix-Matrix
Multiplication

9

Data Distribution

10

Matrix-Matrix
Multiplication in
Case of 1-Dim

11

Matrix-Matrix Multiplication in 1-Dim

12

Matrix-Matrix Multiplication in 1-Dim
The Cn x n matrix is partitioned among n processors, with each processor
computes row of the matrix.

13

Matrix-Matrix Multiplication in 1-Dim
Parallel Algorithm

Input: Matrix A[n][n]

Matrix B[n][n]

Output: Matrix C[n][n]

for (i = 0; i < n; i++) do in parallel

for (j = 0; j < n; j++)

C[i][j] = 0;

for(k = 0; k < n; k++)

C[i][j] += A[i][k] * B[k][j];

14

Matrix-Matrix Multiplication in 1-Dim
Parallel Algorithm

𝑇𝑝(𝑛) = 𝑂(𝑛2)

𝑆𝑝 𝑛 =
𝑛3

𝑛2
= 𝑛; 𝑆𝑝 𝑛 = 𝑂 𝑛

𝐶𝑝 𝑛 = 𝑂(𝑛3)

𝐸𝑝 𝑛 =
𝑛3

𝑛∗𝑛2
= 1

15

Matrix-Matrix
Multiplication in
Case of 2-Dim

16

Matrix-Matrix Multiplication in 2-Dim

17

Matrix-Matrix Multiplication in 2-Dim
The Cn x n matrix is partitioned among n2 processors, with each processor
computes one element of the matrix.

18

Matrix-Matrix Multiplication in 2-Dim
Parallel Algorithm

Input: Matrix A[n][n]

Matrix B[n][n]

Output: Matrix C[n][n]

for (i = 0; i < n; i++) do in parallel

for (j = 0; j < n; j++) do in parallel

C[i][j] = 0;

for(k = 0; k < n; k++)

C[i][j] += A[i][k] * B[k][j];

19

Matrix-Matrix Multiplication in 2-Dim
Parallel Algorithm

𝑇𝑝(𝑛) = 𝑂(𝑛)

𝑆𝑝 𝑛 =
𝑛3

𝑛
= 𝑛2; 𝑆𝑝 𝑛 = 𝑂 𝑛2

𝐶𝑝 𝑛 = 𝑂(𝑛3)

𝐸𝑝 𝑛 =
𝑛3

𝑛2∗𝑛
= 1

20

Matrix-Matrix
Multiplication in
Case of 3-Dim

21

Matrix-Matrix Multiplication:
DNS Algorithm

22

Matrix-Matrix Multiplication:
DNS Algorithm
Using fewer than n3 processors.

Each processor computes a single add-multiply.

This is followed by an accumulation along the C dimension.

Since each add-multiply takes constant time and accumulation and
broadcast takes log n time, the total runtime is log n.

23

Matrix-Matrix Multiplication:
DNS Algorithm
𝑇𝑝(𝑛) = 𝑂(log 𝑛)

𝑆𝑝 𝑛 =
𝑛3

log 𝑛

𝐶𝑝 𝑛 = 𝑂(𝑛3 ∗ log 𝑛)

𝐸𝑝 𝑛 =
𝑛3

𝑛3 ∗log 𝑛
= 1 log 𝑛

24

?

25

